WRKY70 modulates the selection of signaling pathways in plant defense.

نویسندگان

  • Jing Li
  • Günter Brader
  • Tarja Kariola
  • E Tapio Palva
چکیده

Cross-talk between signal transduction pathways is a central feature of the tightly regulated plant defense signaling network. The potential synergism or antagonism between defense pathways is determined by recognition of the type of pathogen or pathogen-derived elicitor. Our studies have identified WRKY70 as a node of convergence for integrating salicylic acid (SA)- and jasmonic acid (JA)-mediated signaling events during plant response to bacterial pathogens. Here, we challenged transgenic plants altered in WRKY70 expression as well as WRKY70 knockout mutants of Arabidopsis with the fungal pathogens Alternaria brassicicola and Erysiphe cichoracearum to elucidate the role of WRKY70 in modulating the balance between distinct defense responses. Gain or loss of WRKY70 function causes opposite effects on JA-mediated resistance to A. brassicicola and the SA-mediated resistance to E. cichoracearum. While the up-regulation of WRKY70 caused enhanced resistance to E. cichoracearum, it compromised plant resistance to A. brassicicola. Conversely, down-regulation or insertional inactivation of WRKY70 impaired plant resistance to E. cichoracearum. Over-expression of WRKY70 resulted in the suppression of several JA responses including expression of a subset of JA- and A. brassicicola-responsive genes. We show that this WRKY70-controlled suppression of JA-signaling is partly executed by NPR1. The results indicate that WRKY70 has a pivotal role in determining the balance between SA-dependent and JA-dependent defense pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense.

Cross talk between salicylic acid (SA)- and jasmonic acid (JA)-dependent defense signaling has been well documented in plants, but how this cross talk is executed and the components involved remain to be elucidated. We demonstrate that the plant-specific transcription factor WRKY70 is a common component in SA- and JA-mediated signal pathways. Expression of WRKY70 is activated by SA and represse...

متن کامل

The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense W

Cross talk between salicylic acid (SA)– and jasmonic acid (JA)–dependent defense signaling has been well documented in plants, but how this cross talk is executed and the components involved remain to be elucidated. We demonstrate that the plant-specific transcription factor WRKY70 is a common component in SAand JA-mediated signal pathways. Expression of WRKY70 is activated by SA and repressed ...

متن کامل

Bacillus thuringiensis - Mediated Priming Induces Jasmonate/Ethylene and Salicylic Acid-Dependent Defense Pathways Genes in Tomato Plants

Bacillus thuringiensis Berliner as a biological control agent can play a crucial role in the integrated management of a wide range of plant pests and diseases. B. thuringiensis is expected to elicit plant defensive response through plant recognition of microbe-associated molecular patterns (MAMPs), however, there is little information on the molecular base of induced systemic ...

متن کامل

Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis

WRKY transcription factors (TFs) have been mainly associated with plant defense, but recent studies have suggested additional roles in the regulation of other physiological processes. Here, we explored the possible contribution of two related group III WRKY TFs, WRKY70 and WRKY54, to osmotic stress tolerance. These TFs are positive regulators of plant defense, and co-operate as negative regulat...

متن کامل

Arabidopsis snc2-1D activates receptor-like protein-mediated immunity transduced through WRKY70.

Plant immune receptors belonging to the receptor-like protein (RLP) family contain extracellular leucine-rich repeats (LRRs) and a short cytoplasmic tail linked by a single transmembrane motif. Here, we report the identification of snc2-1D (for suppressor of npr1-1, constitutive 2), a semidominant Arabidopsis thaliana mutant with constitutively activated defense responses. Map-based cloning of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 46 3  شماره 

صفحات  -

تاریخ انتشار 2006